
KEYWORD SPOTTING ON BRILLIANT LABS MONOCLE

Aghyad Deeb 1 Emeka Ezike 1 Jayson Lin 1

ABSTRACT
This project aims to develop a keyword spotting model tailored for the Brilliant Labs’ Monocle, a pocket-sized
augmented reality (AR) device. The proposed keyword spotting model can enhance user interaction by enabling
seamless and intuitive control through voice commands.

The methodology involves collecting and curating a dataset of relevant voice commands and training a recognition
model using Tensorflow. Then, using Tensorflow Lite Micro (TFLM), this model will be ported to the Monocle’s
microcontroller unit (MCU) in order to run on-device inference with minimal computational overhead while
maintaining high accuracy. This resource-efficient model should run on the Monocle, where its performance can
be evaluated. A variety of metrics will assess the model’s accuracy and inference latency.

By creating a tailored keyword spotting model for Brilliant Labs Monocle, this project contributes to the ad-
vancement of AR technology, fostering a more interactive and engaging experience. Additionally, the model’s
adaptability to the constraints of a microcontroller environment showcases the feasibility of implementing sophisti-
cated machine learning applications on resource-constrained devices, paving the way for innovative developments
of Tiny Machine Learning in AR.

1 INTRODUCTION

While AR devices hold tremendous promise for transform-
ing the way we interact with the digital and physical worlds,
current devices still face several inconveniences that hinder
widespread adoption and seamless integration into daily life.

One major hurdle is the form factor and comfort of AR
hardware. Many existing devices, especially smart glasses
and headsets, can be bulky and conspicuous. Users may
find them uncomfortable to wear for extended periods, and
the aesthetics may not align with mainstream fashion pref-
erences.

Affordability is another critical factor influencing the
widespread adoption of AR devices. Currently, many AR de-
vices come with a hefty price tag in the thousands of dollars,
making them less accessible to the general consumer market.
The high costs are primarily associated with the complex
technology, advanced optics, and specialized components
required for an effective AR experience.

Brilliant Labs, a Singapore-based tech startup, aims to ad-
dress these hurdles with the introduction of their Monocle,
an open-source, pocket-sized AR lens that can be clipped
on any eyewear or held to the eye and has a much more
accessible price tag of $349 (Brilliant-Labs, b).

Being an open-source product, there is currently no estab-
lished method for interacting with the Monocle other than
the two buttons it has. The adoption of these devices requires

an efficient and dependable control mechanism. Numerous
methods exist for controlling AR devices, each carrying
its own set of benefits and constraints. The overarching
objective is to furnish users with instinctive and smooth
interactions, thereby enriching their AR experiences.

Keyword spotting (KWS) represents a method that has
gained popularity for its convenience and versatility. It
involves recognizing specific spoken keywords or phrases
to trigger actions or commands. Keyword spotting is ef-
ficient, allowing users to initiate functions with a simple
voice prompt. In terms of convenience, keyword spotting
stands out because it requires minimal effort and is easily
integrated into daily tasks. Users can quickly and naturally
issue commands without the need for extensive training or
memorization of specific gestures.

To address the limitations of the Brilliant Labs Monocle, fea-
turing a Nordic nRF52832 microcontroller with restricted
Flash memory (512KB) and RAM (64KB) (Brilliant-Labs,
a), TensorFlow Lite Micro (TFLM) emerges as an ideal so-
lution for implementing efficient keyword spotting. TFLM,
a lightweight, open-source machine learning framework tai-
lored for microcontrollers and resource-constrained edge
devices, offers a primary advantage in deploying compact
machine learning models on devices with limited computa-
tional resources. This is especially beneficial for the Mono-
cle MCU, where memory and power constraints are crucial
considerations. The implementation process involves train-
ing and quantizing a keyword spotting model suitable for

Keyword Spotting on Brilliant Labs Monocle

the Monocle MCU. TFLM provides tools and converters
for the conversion of TensorFlow models into a format com-
patible with microcontrollers. Additionally, developers can
customize the build to include only necessary operations,
further optimizing the model for the specific hardware ar-
chitecture.

Currently, there is a lack of locally running keyword-
spotting models on low-powered MCUs for widespread
consumer use. This paper aims to initiate a trend by porting
a keyword-spotting model to run locally on a Brilliant Labs
Monocle.

2 BACKGROUND AND RELATED WORK

The recent trend towards edge computing in KWS applica-
tions signifies a shift from cloud-based processing to local
processing, reducing latency and preserving privacy. This
advancement is crucial in applications where real-time re-
sponse is critical, such as in wake word detection, safety-
critical wearable devices, or when providing immediate
feedback in smart home systems.

The first works of KWS appeared in the late 1980s, laying
the groundwork for the technology used today (Rohlicek
et al., 1989). Traditional KWS models have employed var-
ious algorithms like sliding window, garbage models, and
convolutional neural networks on Mel-frequency cepstrum
coefficients, and transformer-based models (Tang et al.,
2018; Wei et al., 2021). Recent work has found that a
DS-CNN model achieves an accuracy of 95.4% and is com-
pact, making it effective to be used on edge devices (Zhang
et al., 2018). Additional work also shows that by replacing
the digital preprocessing with a proposed analog front-end,
the energy required for data acquisition and preprocessing
can be reduced for KWS (Cerutti et al., 2022). One of
KWS’s contributions today is its crucial role in smart voice
assistants like Google Assistant and Siri. These systems
typically begin with wake-word detection followed by key-
word spotting, which is less compute-intensive compared
to general automatic speech recognition (ASR) and can be
performed on-device with low latency, an important feature
for successful edge device deployment (ARM Community,
2022). The ongoing improvements in KWS, driven by ma-
chine learning and edge computing, continue to expand its
applications, making it an increasingly integral component
of modern voice-activated systems in small edge devices.

In the realm of ML-powered edge devices, the Brilliant Labs
Monocle stands out as a promising addition to the field,
boasting distinctive features and applications that position it
well for edge ML development. Weighing a mere 15g, the
Monocle’s compact and lightweight design makes it an ideal
complement to the evolving landscape of ML-empowered
wearable technology. Equipped with performance hardware

like the previously mentioned FPGA accelerator, the Mon-
ocle is empowered to effectively handle machine learning
and computer vision use cases.

Notably, Brilliant Labs’ emphasis on development and inte-
gration flexibility adds to the Monocle’s appeal, making it
a valuable investment for research endeavors. This flexibil-
ity streamlines development processes and ensures that the
device remains relevant for ongoing updates and utilization
in the years to come. For programming convenience, the
Monocle supports AR Studio for VSCode, facilitating the
development, testing, and storage of applications. Moreover,
its integration with mobile apps through Bluetooth, compat-
ible with both iOS and Android, enhances its functionality.

As mentioned previously, the Brilliant Labs Monocle is
powered by a Nordic nRF52832 microcontroller. Therefore,
initiating development on a Nordic nRF52DK board serves
as the initial step, as successes achieved on this board seam-
lessly translate to the Monocle’s MCU. The nRF52DK, a
versatile single-board development kit, is specifically de-
signed for Bluetooth Low Energy, Bluetooth mesh, NFC,
ANT, and 2.4 GHz proprietary development. Its foundation
on the nRF52805, nRF52810, and nRF52832 System on
Chips (SoCs) allows for the creation of a broad spectrum of
applications, particularly in the realms of IoT and wearable
devices.

A notable limitation of the board, which may be addressed
in the future, is the absence of support on Edge Impulse.
Presently, only the nRF52840 series enjoys compatibility,
necessitating a separate and more intricate method for im-
plementing the KWS model on the MCU. Despite this chal-
lenge, a compelling illustration of the nRF52 DK’s prowess
in machine learning is evident in the ’ElephantEdge’ wildlife
tracker challenge.

In this competition, the winning design, ’EleTect,’ success-
fully leveraged the nRF52840 SoC, a pivotal component
adjacent to the nRF52 DK. This IoT and TinyML-based
wildlife tracker showcased a diverse array of models de-
signed for tasks such as monitoring elephant movements,
predicting behaviors, and detecting mood swings (Cerutti
et al., 2022). Despite the specific constraints posed by the
nRF52840 series, ’EleTect’ demonstrated the board’s ca-
pability to excel in sophisticated machine learning applica-
tions.

Given this context, we posit that employing the nRF52 DK
to explore the feasibility of porting firmware and software to
the Monocle is paramount to the success of our project. The
exemplary performance in the ’ElephantEdge’ challenge
underscores the potential of adapting and optimizing ap-
plications for the Monocle, despite the current limitations
posed by Edge Impulse compatibility.

Lastly, this paper is an extension of Harrison Zhang’s re-

Keyword Spotting on Brilliant Labs Monocle

search, which centered on the utilization of an nRF52DK
board as an intermediary for compiling TFLM firmware and
a KWS model onto a Brilliant Labs Monocle. Harrison’s
contribution was pivotal in assembling the essential compo-
nents of the project, including TFLM firmware, Monocle
MicroPython, and a pre-downsized KWS model. However,
his Makefile was incomplete and unable to seamlessly inte-
grate the gathered components.

The work of this paper builds upon Harrison’s foundation
by enhancing the Makefile to ensure the proper compilation
of firmware and model onto a nRF52DK board. We address
the deficiencies in the Makefile, providing a comprehen-
sive solution that streamlines the compilation process and
ensures the successful assembly of the project components.

Furthermore, we extend Harrison’s efforts by developing
scripts to facilitate experimentation with data collection and
augmentation for audio recorded by the Monocle. This addi-
tional step enhances the project’s capabilities, allowing for
a more comprehensive exploration of audio data and con-
tributing to the overall advancement of the research initiated
by Harrison Zhang.

3 METHODS AND CHALLENGES

The main goal is to be able to run ML models locally on the
Monocle. The Monocle has two processing units that can
be used to run the models. The first is the Bluetooth MCU,
Nordic nRF52832. The second is the FPGA, Gowin GW1N-
LV9MG100C6/I5. While we speculate that the FPGA would
be able to run models more efficiently and would be better
for leveraging parallel processing of the Matrix Matrix Mul-
tiplications, we opted for working on the Bluetooth MCU
given the lack of experience of the team with FPGAs and
the time constraint.

The original firmware of the Monocle incorporated Mi-
croPython such that developers can build software on top
of the firmware. Modifying this firmware would provide a
developer-friendly environment and gives us a starting point
to work with.

When it comes to the framework for running the Machine
Learning models, we use TFLM as it’s a very common
framework for ML on microcontrollers with extensive com-
munity support.

The first step is to incorporate TFLM with the Monocle’s
MicroPython firmware. To make this work, the TFLM
repository files were added to the root folder of the firmware
of the monocle. The next step is to compile the files of
TFLM with the monocle’s firmware. The work of Harrison
Zhang was a significant help in achieving this part. We
weren’t able to use his code immediately, however. When
we tried to run the makefiles in the repository he created, we

faced a lot of errors that led to us being unable to compile
the firmware with TFLM immediately. We spent several
days trying to debug and understand why the code wasn’t
working.

After getting nowhere, we decided to spend time learning
how to write makefiles to be able to understand how to debug
the complex makefile that we could not get to work. To
explain how we got TFLM to compile with the firmware, we
explain the process needed to fix the makefiles, which was
where most of our time was spent. We started interpreting
all the makefiles that contribute to building the Monocle’s
firmware. We found that the Monocle builds on top of three
makefiles provided by MicroPython by adding a makefile
that adds compatibility to the Monocle.

The makefile in the original Monocle’s repository (Labs,
2023) does the following:

1. Configure the compilation toolchain to work with the
monocle by using the ”arm-none-eabi” toolchain

2. Adds optimization flags to be used in compilation

3. Adds the directories of the header files needed for com-
pilation to be included as flags in the compilation com-
mand

4. Add the source files needed to create the modules that
control the monocle’s sensors and other source files
necessary for compatibility

To build the firmware, the Monocle’s original makefile does
the following:

1. Uses one of MicroPython’s makefiles to compile C
files into object files

2. Compiles all object files into an ‘application.elf‘ files

3. Changes the format from ‘application.elf‘ to ‘applica-
tion.hex‘

We went through the makefiles inside MicroPython, and the
most important part is that they add compilation rules to
create object files out of ‘.c‘ and ‘.cpp‘ files. These rules are
then used to compile all the source files of the monocle’s
firmware to create the ‘application.elf‘ file and so on.

We then went through the modified makefile that included
the compilation of TFLM in addition to the compilation
of the firmware into one hex file. This file was created by
combining the original makefile of TFLM and the makefile
of the mMnocle’s firmware. The file adds the source files
of TFLM, which are written in C++ with the extension ‘.cc‘
and adds the necessary flags for compilation, in addition to
the original components of the Monocle’s makefile.

Keyword Spotting on Brilliant Labs Monocle

After understanding how the final makefile is structured,
we tried to build the firmware once again to debug it. We
noticed that the compiler declared that several object files
were missing. After investigating these missing object files,
we noticed that all of them were supposed to be compiled
from ‘.cc‘ files, which led us to understand that there was a
problem with the compilation of some C++ files, although
other C++ files were compiling successfully.

Our first intuition was that this was due to incorrect speci-
fication of the directories, so we created rules to print the
directories the makefile was using and they were all cor-
rect. We then checked the C++ files compiler, which was
correctly setup. We looked deeper into the makefile rule
responsible for compiling C++ files into object files. The
rule used the pattern ‘%.cpp‘ to create object files, and most
of Tensorflow files had the extension ‘.cc‘. We added a
rule to compile ‘.cc‘ files into object files and this fixed the
problems we were having with building the firmware and
now we had a working version of the firmware with TFLM.

Since TFLM is written in C++, we need a C++ file to use it.
In order to do that, we create a new MicroPython module.
This module, which can be found at ”/modules/kws.c” con-
tains one function that runs keyword spotting indefinitely.
The module defines a run method and attaches it to the
appropriate MicroPython object. The implementation of
the run function is handled by another C++ file, located
at ”/modules/helpers/kws helper.cc”. This helper file loops
indefinitely running the micro speech model defined in the
TFLM examples, defines the operations needed to run the
model, runs the model on two pre-recorded spectrogram
files, the first is a recording saying the word ”yes”, the other
saying the word ”no”. The function then prints the classi-
fication results of the model, which successfully classifies
each word in its corresponding class.

In the effort to run the model on the Monocle, we also had
to extract audio from the Monocle’s microphone. Using
the Monocle MicroPython API, we were able to extract
audio data stored on the FPGA. However, processing the
audio proved to be a challenge due to the lack of audio
modules in MicroPython. Therefore, we had to manu-
ally create .wav files by writing a function that properly
inserts relevant byte information, but as shown in ”exam-
ple monocle recording .wav”, the audio quality was shock-
ingly poor. However, it is unclear whether this is because of
the microphone or the .wav conversion function.

Lastly, we also needed to create functions that converted
.wav files to spectrograms in order for the KWS model to
take the audio as input. This also involved research on
audio spectrogram transformation in order to create the
functions needed to convert the data. In ”spectrogram.py”,
the conversion functions we used to create spectrograms
from .wav files are detailed.

4 INSIGHTS AND FINDINGS

Our work shows that it’s possible to configure TFLM to
work with the monocle’s firmware. Further, we show that
running a model locally on the monocle’s Bluetooth MCU
is possible despite the limited computational ability, without
facing significant latency.

From our estimations, inference takes about 1200 millisec-
onds on an audio sample that is converted into a 1960 byte
spectrogram sample. This is fairly fast and should suffice
for an adequate user experience.

5 NEXT STEPS

To further enhance the capabilities of the KWS model for
Brilliant Labs Monocle, consider the following comprehen-
sive next steps:

Audio Signal Processing Explore and implement signal
processing techniques to enhance the quality of the micro-
phone recordings. This may involve noise reduction, echo
cancellation, or other methods to improve the accuracy of
keyword recognition.

Model Fine-Tuning Fine-tune the KWS model specifically
for the Monocle’s microphone and noise pattern. This in-
volves training the model on a dataset that captures the
unique acoustic characteristics of the Monocle environment,
improving its performance in real-world scenarios.

Platform Porting Adapt the KWS model to run directly on
the Monocle device, moving away from the development
kit. This requires the model to be optimized for the target
hardware and takes advantage of the Monocle’s specific
capabilities in order to perform real-time keyword spotting
based on the audio input from the device’s built-in micro-
phone.

FPGA Integration Investigate the feasibility and benefits of
utilizing the FPGA on the Monocle instead of the Bluetooth
MCU for KWS processing. Evaluate how FPGA accel-
eration can enhance the model’s performance and overall
efficiency.

Tensorflow with MicroPython Explore the possibility of
configuring TensorFlow to work directly with MicroPython
on the Monocle device. This could streamline the deploy-
ment process and reduce dependencies, allowing for a more
seamless integration of the KWS model into the Monocle
ecosystem.

Benchmarking and Optimization Conduct benchmarking
tests to assess the model’s inference speed and resource
utilization on the Monocle. Optimize the model and its
implementation to ensure efficient use of the device’s limited
resources while maintaining acceptable performance.

Keyword Spotting on Brilliant Labs Monocle

User Interface Integration Integrate the KWS functionality
into the Monocle user interface, providing a user-friendly
experience for configuring, activating, and interacting with
the keyword spotting feature.

Community Engagement Foster community engagement
by sharing updates, seeking feedback, and encouraging con-
tributions from the Brilliant Labs Monocle user community.
Collaborate with developers and users to gather insights and
improve the KWS model continuously.

6 CONTRIBUTIONS

Aghyad Deeb was responsible for understanding the make-
files and getting the compilation to work. He helped find the
crucial addition necessary to allow the Makefile to properly
compile TFLM and the KWS model. In doing so, he had
to explore the overall structure of the codebase and learned
about the ins and outs of Makefiles.

Emeka Ezike was responsible for accessing audio data from
the monocle. He researched and implemented methods to
convert the audio bytes stored on the FPGA into .wav files
and spectrogram bytes compatible with the KWS search
model using the limited MicroPython modules. Further-
more, Emeka helped research the existing MicroPython
KWS implementations and helped identify key issues and
rule out false solutions.

Jayson Lin was responsible for exploring the overall struc-
ture of Harrison’s codebase. He helped identify the func-
tions of numerous header files, C files, MicroPython files,
and Makefiles. Furthermore, he contributed to troubleshoot-
ing the nRF52DK board, so that applicable steps could be
written for flashing the firmware to the nRF52DK board.

ACKNOWLEDGMENTS

We express our sincere gratitude to the teaching fellows
for their support and guidance, and specifically Matthew
Stewart for connecting us with knowledgeable individuals.

Special thanks to Harrison Zhang for his insightful TFLM
Micropython work and detailed explanations that signif-
icantly contributed to the success of our endeavors. His
generosity in sharing knowledge played a crucial role in our
project.

Lastly, we extend our gratitude to Professor Vijay Reddi
for being an exceptional instructor. Professor Reddi lead a
learning environment that fostered curiosity, critical think-
ing, and a deep understanding of the subject matter. His
dedication to education has been an inspiration throughout
our project.

All group members have collectively agreed to allow the
publication of our final report video on YouTube by the

course staff.

REFERENCES

ARM Community. Fast and Accurate Key-
word Spotting Using Transformers. https:
//community.arm.com/arm-research/
b/articles/posts/fast-and-accurate.
keyword-spotting-using-transformers,
2022. Accessed: 2023-12-10.

Brilliant-Labs. Brilliant Labs Documentation. https:
//docs.brilliant.xyz/, a. Accessed: 2023-12-
10.

Brilliant-Labs. Brilliant Labs Monocle Product
Page. https://brilliant.xyz/products/
monocle, b. Accessed: 2023-12-10.

Cerutti, G., Cavigelli, L., Andri, R., Magno, M., Farella,
E., and Benini, L. Sub-mw keyword spotting on an mcu:
Analog binary feature extraction and binary neural net-
works. 2022.

Labs, B. Micropython ported to the monocle.
https://github.com/brilliantlabsAR/
monocle-micropython, 2023.

Rohlicek, J., Russell, W., Roukos, S., and Gish, H. Contin-
uous hidden markov modeling for speaker-independent
word spotting. In Proceedings of the 14th IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1, pp. 627–630, 1989.

Tang, R., Wang, W., Tu, Z., and Lin, J. An experimen-
tal analysis of the power consumption of convolutional
neural networks for keyword spotting, 2018.

Wei, B., Yang, M., Zhang, T., Tang, X., Huang, X., Kim, K.,
Lee, J., Cho, K., and Park, S.-U. End-to-end transformer-
based open-vocabulary keyword spotting with location-
guided local attention. In Interspeech 2021, pp. 361–
365, 2021. doi: 10.21437/Interspeech.2021-1335. URL
https://www.interspeech2021.org/.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. Hello edge:
Keyword spotting on microcontrollers, 2018.

https://community.arm.com/arm-research/b/articles/posts/fast-and-accurate.keyword-spotting-using-transformers
https://community.arm.com/arm-research/b/articles/posts/fast-and-accurate.keyword-spotting-using-transformers
https://community.arm.com/arm-research/b/articles/posts/fast-and-accurate.keyword-spotting-using-transformers
https://community.arm.com/arm-research/b/articles/posts/fast-and-accurate.keyword-spotting-using-transformers
https://docs.brilliant.xyz/
https://docs.brilliant.xyz/
https://brilliant.xyz/products/monocle
https://brilliant.xyz/products/monocle
https://github.com/brilliantlabsAR/monocle-micropython
https://github.com/brilliantlabsAR/monocle-micropython
https://www.interspeech2021.org/

